Lecture Notes in Geoinformation and Cartography

Series editors

William Cartwright, Melbourne, Australia
Georg Gartner, Wien, Austria
Liqiu Meng, München, Germany
Michael P. Peterson, Omaha, USA
The Lecture Notes in Geoinformation and Cartography series provides a contemporary view of current research and development in Geoinformation and Cartography, including GIS and Geographic Information Science. Publications with associated electronic media examine areas of development and current technology. Editors from multiple continents, in association with national and international organizations and societies bring together the most comprehensive forum for Geoinformation and Cartography.

The scope of Lecture Notes in Geoinformation and Cartography spans the range of interdisciplinary topics in a variety of research and application fields. The type of material published traditionally includes:

- proceedings that are peer-reviewed and published in association with a conference;
- post-proceedings consisting of thoroughly revised final papers; and
- research monographs that may be based on individual research projects.

The Lecture Notes in Geoinformation and Cartography series also includes various other publications, including:

- tutorials or collections of lectures for advanced courses;
- contemporary surveys that offer an objective summary of a current topic of interest; and
- emerging areas of research directed at a broad community of practitioners.

More information about this series at http://www.springer.com/series/7418
OpenStreetMap in GIScience

Experiences, Research, and Applications
Foreword

OpenStreetMap Studies and Volunteered Geographical Information

This book comes at an apt time to reflect on the growing role of OpenStreetMap (OSM) in Geographical Information Science. This summer, the OpenStreetMap project celebrated ten years of operation, which began on the date of the domain name registration. I first heard about the project when it was in its very early stages and, with the support of the Royal Geographical Society, carried out the first research project that focused on OpenStreetMap, with an attempt to develop a mobile data collection tool on an early GPS-enabled phone. As a result, I found myself writing, together with Patrick Weber, what is now the most cited paper on the project (Haklay and Weber 2008). This early exposure to the project provided me with opportunities to watch, with astonishment, how it has become an important source of geographical information, as well as the explosive growth in academic research with and about it.

Of course, in the early years the project was small, with an unclear future and too localised to have a wider impact. It is, therefore, unsurprising that, so far as academic publications indexing reveals, Nelson et al. (2006) ‘Towards development of a high quality public domain global roads database’ and Taylor and Caquard (2006) ‘Cybercartography: Maps and Mapping in the Information Era’ are the first peer-reviewed papers that mention OpenStreetMap. Yet, it is interesting that, within two years of establishment, researchers in Canada and the United States heard about it and realised its potential. Moreover, many chapters in the current volume attest to the foresight that these two papers demonstrated.

Since 2006, OpenStreetMap has received plenty of academic attention. As of August 2014, more ‘conservative’ academic search engines such as ScienceDirect or Scopus find 286 and 236 peer-reviewed papers (respectively) that mention the project. The ACM digital library finds 461 papers in the areas that are relevant to computing and electronics, while Microsoft Academic Research finds only 112. Google Scholar, probably the most expansive of the search engines, lists over
9000 (!). Even with the most conservative version from Microsoft, we can see an impact on fields ranging from social science to engineering and physics. In short, OpenStreetMap has facilitated major contributions to knowledge beyond producing maps.

The link between OpenStreetMap and the concept of Volunteered Geographical Information is also long-standing. Michael Goodchild, in his seminal paper from 2007 that defined Volunteered Geographic Information (VGI), mentioned OpenStreetMap as an example. Since then the literature frequently conflates OSM and VGI. In some recent papers statements such as ‘OpenStreetMap is considered as one of the most successful and popular VGI projects’ or ‘the most prominent VGI project OpenStreetMap’ are common\(^1\) and, to some degree, the boundary between the two is being blurred. I also admit to be part of the problem—for example, with the title of my 2010 paper ‘How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets’. However, upon reflection on the characteristics of OpenStreetMap and other VGI projects, I became uncomfortable with the equivalence between OSM and VGI. The stance that Neis and Zielstra (2014) offer is, I suggest, more accurate: ‘One of the most utilized, analyzed and cited VGI-platforms, with an increasing popularity over the past few years, is OpenStreetMap (OSM).’

The reason that it is valuable to differentiate between focusing on the OpenStreetMap project (what we can call OSM studies) and the more generic VGI research is partly due to the volume of papers specifically about the project, and what they reveal about the project. Over the years, several types of research papers that can be classified as OSM studies have emerged.

First, there is a whole set of research projects that use OSM data because it is easy to use and free to access (for example, in computer vision or even string theory). For these projects, OSM is just data to be used (see “Data Retrieval for Small Spatial Regions in OpenStreetMap” and “The Next Generation of Navigational Services Using OpenStreetMap Data: The Integration of Augmented Reality and Graph Databases”, which arguably fall into this category). Second, there are studies of OSM data: quality, the history and evolution of objects in the database, what we can learn about the nature of the data and other aspects. The majority of this volume falls under this category (see “Assessment of Logical Consistency in OpenStreetMap Based on the Spatial Similarity Concept”–“Inferring the Scale of OpenStreetMap Features”, “Route Choice Analysis of Urban Cycling Behaviors Using OpenStreetMap: Evidence from a British Urban Environment”, “Building a Multimodal Urban Network Model Using OpenStreetMap Data for the Analysis of Sustainable Accessibility”–“Using Crowd-Sourced Data to Quantify the Complex Urban Fabric—OpenStreetMap and the Urban–Rural Index”). Third, there are studies that also look at the interactions between patterns of contribution and the data—for example, in trying to infer trustworthiness (see “Spatial Collaboration Networks of OpenStreetMap”). Fourth, there are studies that look at the wider

\(^1\) These are deliberately unreferenced so as not to argue that specific authors are to blame.
societal aspects of OpenStreetMap—for example, what the spatial and social implications of data coverage are (see “Social and Political Dimensions of the OpenStreetMap Project: Towards a Critical Geographical Research Agenda”). Finally, there are studies of the social practices in OpenStreetMap as a project (see “The Impact of Society on Volunteered Geographic Information: The Case of OpenStreetMap”).

In short, there is a significant body of knowledge regarding the nature of the project, the implications of what it produces, and ways to understand the information that emerges from it. Clearly, we now know that OSM produces good data and is aware of the patterns of contribution. What is also clear is that many of these patterns are specific to OSM. Because of the importance of OSM to so many application areas (including illustrative maps in string theory!), these insights are very important. Some of these insights are expected to be also present in other VGI projects but making such analogy needs to be done carefully, and only when there is evidence from other projects that this is the case. In short, we should avoid conflating VGI and OSM—and this volume provides a clear demonstration why this is the case.

November 2014

Prof. Mordechai (Muki) Haklay
Professor of Geographical Information Science
Department of Civil, Environment and Geomatic Engineering
University College London (UCL), UK

References

Contents

An Introduction to OpenStreetMap in Geographic Information Science: Experiences, Research, and Applications 1
Jamal Jokar Arsanjani, Alexander Zipf, Peter Mooney and Marco Helbich

Part I Data Management and Quality

Assessment of Logical Consistency in OpenStreetMap Based on the Spatial Similarity Concept ... 19
Peyman Hashemi and Rahim Ali Abbaspour

Quality Assessment of the Contributed Land Use Information from OpenStreetMap Versus Authoritative Datasets 37
Jamal Jokar Arsanjani, Peter Mooney, Alexander Zipf and Anne Schauss

Improving Volunteered Geographic Information Quality Using a Tag Recommender System: The Case of OpenStreetMap 59
Arnaud Vandecastelee and Rodolphe Devillers

Inferring the Scale of OpenStreetMap Features .. 81
Guillaume Touya and Andreas Reimer

Data Retrieval for Small Spatial Regions in OpenStreetMap 101
Roland M. Olbricht
Part II Social Context

The Impact of Society on Volunteered Geographic Information: The Case of OpenStreetMap 125
Afra Mashhadi, Giovanni Quattrone and Licia Capra

Social and Political Dimensions of the OpenStreetMap Project: Towards a Critical Geographical Research Agenda 143
Georg Glasze and Chris Perkins

Spatial Collaboration Networks of OpenStreetMap 167
Klaus Stein, Dominik Kremer and Christoph Schlieder

Part III Network Modeling and Routing

Route Choice Analysis of Urban Cycling Behaviors Using OpenStreetMap: Evidence from a British Urban Environment 189
Godwin Yeboah and Seraphim Alvanides

The Next Generation of Navigational Services Using OpenStreetMap Data: The Integration of Augmented Reality and Graph Databases .. 211
Pouria Amirian, Anahid Basiri, Guillaume Gales, Adam Winstanley and John McDonald

Building a Multimodal Urban Network Model Using OpenStreetMap Data for the Analysis of Sustainable Accessibility 229
Jorge Gil

Part IV Land Management and Urban Form

Assessing OpenStreetMap as an Open Property Map 255
Mohsen Kalantari and Veha La

Investigating the Potential of OpenStreetMap for Land Use/Land Cover Production: A Case Study for Continental Portugal 273
Jacinto Estima and Marco Painho
Using Crowd-Sourced Data to Quantify the Complex Urban Fabric—OpenStreetMap and the Urban–Rural Index 295
Johannes Schlesinger

Part V Outlook

An Outlook for OpenStreetMap 319
Peter Mooney